
A Batched Multi-Armed Bandit Approach
to News Headline Testing

Yizhi Mao
Oath Inc

Sunnyvale, USA
lolam@oath.com

Miao Chen
Oath Inc

Sunnyvale, USA
miaoc@oath.com

Abhinav Wagle
Oath Inc

Sunnyvale, USA
awagle@oath.com

Junwei Pan
Oath Inc

Sunnyvale, USA
jwpan@oath.com

Michael Natkovich
Oath Inc

Sunnyvale, USA
mln@oath.com

Don Matheson
Oath Inc

Sunnyvale, USA
donm@oath.com

Abstract—Optimizing news headlines is important for pub-
lishers and media sites. A compelling headline will increase
readership, user engagement and social shares. At Yahoo Front
Page, headline testing is carried out using a test-rollout strategy:
we first allocate equal proportion of the traffic to each headline
variation for a defined testing period, and then shift all future
traffic to the best-performing variation. In this paper, we in-
troduce a multi-armed bandit (MAB) approach with batched
Thompson Sampling (bTS) to dynamically test headlines for
news articles. This method is able to gradually allocate traffic
towards optimal headlines while testing. We evaluate the bTS
method based on empirical impressions/clicks data and simulated
user responses. The result shows that the bTS method is robust,
converges accurately and quickly to the optimal headline, and
outperforms the test-rollout strategy by 3.69% in terms of clicks.

Index Terms—Headline testing, Multi-armed bandit, Thomp-
son Sampling

I. INTRODUCTION

Headline testing is important for publishers and media sites.
Visitors to the homepage of online publishers are usually pre-
sented with lists or groups of headlines, sometimes along with
snippets1. A compelling headline would encourage visitors to
click it and read the whole article, and thus help increase user
engagement, social sharing and revenue. At Yahoo Front Page,
we follow a test-rollout strategy for headline testing. Once an
article is published, multiple title variations are displayed to
randomized user buckets with equal size for a defined period to
conduct bucket testing. When the test is complete, the headline
variant that has most clicks during the bucket testing period
is selected and displayed for the rest of the article life. This
strategy has been adopted as a common practice to select the
best title variants and ad versions for headline testing [1] and
online advertising [2], respectively.

There are two limitations of this test-rollout strategy. First,
during the initial testing period, we have to show the title
variants with lower click-through rates (CTRs) to a sizable
fraction of user population. For those users, we fail to optimize
their engagement. Further, a large proportion of article traffic
clusters in its early life, because freshness is a key factor of
article popularity [3]. The test-rollout strategy conducts bucket

1For example, Yahoo Front Page (https://www.yahoo.com/), Google News
(https://news.google.com/), The New York Times (https://www.nytimes.com/),
and The Wall Street Journal (https://www.wsj.com/).

testing at the beginning of the article life, which may lead to
significant click loss.

On the other hand, the performance of headline variations
usually varies over time. The conclusion drawn from the initial
testing period may not always hold throughout the whole
article life. The test-rollout practice is not able to capture any
changes subsequent to the bucket testing period.

To address the limitations mentioned above, we formulate
headline testing as a multi-armed bandit (MAB) problem, and
introduce a batched Thompson Sampling method to optimize
user engagement while learning the performance of each
headline variant. The MAB problem is defined as follows.
There are K arms, each associated with an unknown reward
distribution. The player iteratively plays one arm, observe the
associated reward, and decides which arm to play in the next
iteration [4]. There is a tension between selecting the current
best-performing arm to harvest immediate gain (exploitation)
and discovering the optimal arm, i.e., the arm with the highest
expected reward, but risking immediate loss (exploration). In
the headline testing scenario, the headline variants of an article
correspond to the arms, and the click count of each headline
variant is the reward associated with each arm. Our goal is to
maximize the sum of clicks across arms for each article.

There are many MAB algorithms such as ε-greedy [5],
Upper Confidence Bound (UCB) algorithms [6] [7] [8],
Thompson Sampling [9], and Gittins Index [10]. Among them
we select Thompson Sampling due to its strong empirical
results [11] [12], solid theoretical guarantees [13] [14] [4] [15],
and wide industrial application [16] [17] [18] [19] [20].

In traditional Thompson Sampling, model parameters are
updated for every single user response. It becomes a
formidable computational burden, as our site has a high
volume of incoming traffic at high velocity. This leads us
to consider an algorithm that processes user responses after
they arrive in batches over a certain time period. Thompson
Sampling with batch updates had been studied in display
advertising and news article recommendation to analyze how
it performs in the case of delayed user response processing
compared with other MAB algorithms [11]. Batch update is
incorporated in recent industrial applications of Thompson
Sampling [20] [21]. Although how they select the update
frequency is not disclosed, [20] adopts a method to update
traffic allocation once a day, and [21] updates twice a day.



In this paper, we present a batched Thompson Sampling
(bTS) method that is tuned for optimal performance when
user feedback (i.e., observed rewards) is processed in batches.
The performance evaluation is based on empirical impres-
sions/clicks of articles at Yahoo Front Page and user re-
sponses simulated from empirical CTRs, and shows that the
bTS method is robust, converges quickly to the true optimal
arms, and outperforms the test-rollout strategy. Our study is
motivated by the headline testing problem, but one can apply
this algorithm to other real-world problems where we need to
accomplish optimization while testing with high volume and
high velocity incoming data.

The rest of the paper is organized as follows. Section II
introduces the current headline testing practice at Yahoo Front
Page, as well as its limitations. Section III describes the
batched Thompson Sampling (bTS) method that we propose
to apply in headline testing to gain more reward. We show
the evaluation of the bTS method in Section IV. Section V
concludes and discusses the future work.

II. CURRENT HEADLINE TESTING PRACTICE

Currently at Yahoo Front Page, headline testing follows the
test-rollout strategy which consists of two periods:
• Testing period is the first hour after an article is pub-

lished. During the testing period, each viewing request is
randomly assigned to one of the headline variants with
equal probability. At the end of the testing period, we
deem the headline variant with the highest CTR as the
winner headline.

• Post-testing period refers to the remaining article lifespan
after the testing period, during which we display the
winner headline to all traffic.

The test-rollout strategy for headline testing is intuitive and
easy to implement in the system. However, it has the following
two limitations:

A. User Engagement Loss in the Testing Period

In the first hour testing period, impressions are equally
allocated to each headline variant, which means that for an
article with K arms, only 1

K of the traffic is assigned to the
headline variant with the highest underlying CTR. Showing
inferior headline variants to K−1

K of the traffic will sacrifice
user engagement (e.g., article clicks) and user experience.
The loss of user engagement and experience are both sizable
because the traffic in the testing period covers as high as
24.36% of the total impressions across all articles. This result
is based on empirical headline testing data from Yahoo Front
Page, which will be described in Section III-B1.

B. Arm Performance Discrepancy Between Testing and Post-
testing Period

The test-rollout practice is unable to capture any perfor-
mance change of headline variations beyond the testing period.
Empirical data from Yahoo Front Page, same as the data
mentioned above, shows the headlines deemed best during
the testing period changed their performance afterward: on

average there is a 12% discrepancy in their CTR between
testing and post-testing periods. Thus, it is possible for the
arm deemed optimal during the one-hour testing period to
be actually sub-optimal over the article lifespan. Such a
performance change cannot be observed and handled in the
current practice.

To enhance this test-rollout practice, we formulate headline
testing as an MAB problem and present a batched Thompson
Sampling approach. It is able to explore for the optimal
variant, and at the same time gradually shift traffic to the best-
performing variant. The following section introduces the MAB
headline testing methodology in detail.

III. METHODOLOGY

This section describes the batched Thompson Sampling
(bTS) method that is able to gradually allocate traffic towards
the well-performing arms, while leaving some traffic to other
arms so as to explore for the possibly unobserved optimal arm.
Section III-A formulates headline testing as a Bernoulli bandit
problem, and introduces Thompson Sampling for Bernoulli
bandits. In Section III-B, we explain the rationale of incorpo-
rating batch updates in Thompson Sampling, and introduce the
factors associated with bTS. Section III-B also describes our
empirical impressions/clicks data and how we simulate user
responses based on them. Sections III-C to III-E present how
we determine and tune the factors of bTS.

A. Preliminaries

1) Headline Testing as a Bernoulli Bandit Problem: Sup-
pose an article has K headline variants written by editors.
In the MAB framework, each headline variant is treated as
an arm. Each headline, when displayed, yields either a click
(success) or no click (failure) as the reward. The reward for
headline k ∈ {1, ...,K} is Bernoulli distributed, with the
success probability (i.e., the probability of being clicked) as θk
∈ [0, 1]. The reward distribution of arm k is fixed but unknown,
in the sense that its parameter θk is unknown. At time step
t ∈ [1, T ], we select an arm to display, and collect the reward
observed from the selected arm. Here T is the total number of
impressions we decide to run MAB experiment on. Our goal
is to maximize the total clicks for this article.

2) Thompson Sampling: Thompson Sampling is a random-
ized Bayesian algorithm to solve the MAB problem of reward
maximization [9]. The general idea of Thompson Sampling
is to impose a prior distribution on the parameters of the
reward distribution, update the posterior distribution using the
observed reward, and play an arm according to its posterior
probability at each time step.

In Bernoulli bandit problems, Thompson Sampling uses
Beta distribution to model the success probability θk for arm k
because the observed reward follows a Bernoulli distribution,
and the Beta distribution is a conjugate prior for the Bernoulli
distribution [4]. Initially, the Thompson Sampling algorithm
imposes a Beta(1,1) prior on the success probabilities of all
arms. It is a reasonable initial prior, because Beta(1,1) is the
uniform distribution on the interval (0,1) [4] [11]. At time step



t ∈ [1, T ], Thompson Sampling algorithm draws a random
sample from the Beta distribution of each arm, and displays
the arm associated with the largest sampled value. Based on
the observed feedback of the displayed arm, the Beta(αt, βt)
distribution of the displayed arm is updated to Beta(αt + 1,
βt) if the feedback is a click, or to Beta(αt, βt + 1) otherwise.

Many studies have demonstrated the strong performance
of Thompson Sampling algorithm in the MAB problem,
both theoretically and empirically. [13] investigates Thompson
Sampling as Bayesian Learning Automaton, and shows that in
the two-armed Bernoulli bandit problem, Thompson Sampling
converges to only playing the optimal arm with probability
one. [14] proposes an optimistic version of Thompson Sam-
pling, and proves both Thompson sampling and the optimistic
version result in optimal behaviour in the long term consis-
tency sense described by [22]. Further, [4] and [15] provide
regret bounds for Thompson Sampling that are asymptotically
optimal in the sense defined by [23], so that it has the
theoretical guarantee competitive to UCB algorithms. Empir-
ically, [11] shows the performance of Thompson Sampling
is competitive to or better than that of other alternative MAB
algorithms, such as ε-greedy and UCB, on real-world problems
like display advertising and news article recommendation.
[11] also mentions Thompson Sampling can be implemented
efficiently, in comparison with full Bayesian methods such as
Gittins index. Recently, adaptations of Thompson Sampling
have been applied in many domains, such as revenue man-
agement [24], recommendation system [25], online service
experiments [19], website optimization [20], and online ad-
vertising [16] [17] [18].

B. Batch Updates for Real-world High-volume Traffic

In traditional Thompson Sampling for Bernoulli bandits,
the Beta distribution of the selected arm is updated after
every reward feedback is observed. In a real-world system,
especially when both the volume and velocity of incoming
traffic are high, the feedback is typically processed in batches
over a certain period of time. This is the case for our current
infrastructure of headline testing. Thus, to implement Thomp-
son Sampling, it is necessary to apply the batched Thompson
Sampling (bTS) that updates the posterior distribution after a
fixed time period.

The general procedure of bTS is described as follows:
within each fixed time interval (i.e., batch), the Beta distribu-
tion of each arm remains unchanged. We allocate traffic across
arms based on their random Beta distribution samples drawn
for each incoming view event. At the end of a time interval,
we aggregate the data collected within this batch, namely the
numbers of clicks and impressions for each arm, and use the
aggregated data to update the Beta distribution of each arm.

There are three factors to be tuned for bTS. The first
one is how long the algorithm should run. We determine
an algorithm stopping point after which the click gain is so
little that the system cost is not worthwhile. The second is
how we aggregate the feedback within each batch to update
the posterior distributions. The last factor is the time interval

TABLE I
IMPRESSIONS AND BATCH SIZES FOR A SAMPLE ARTICLE

Timestamp Impressions2 Batch Index Batch size

12:48:00 615 1
9,94512:49:00 4,568 1

12:50:00 4,762 1

12:51:00 5,282 2
16,02812:52:00 5,412 2

12:53:00 5,334 2

between each update. These three factors are determined based
on the empirical as well as simulated data from our real-world
headline testing platform, which will be described as follows.

1) Empirical data: The empirical data cover the articles
with headline testing at Yahoo Front Page on two weekdays
and one weekend day. In the testing period, the data consist
of impressions and clicks of all headline variants for each
article. While in the post-testing period, we only have data on
the headline variant deemed best in the previous testing period
for each article, because all traffic is shifted to this headline
variant. The impressions and clicks are aggregated by every
minute.

2) Simulation practice: Similar as how [11] evaluates
Thompson Sampling in display advertising, we evaluate the
performance of bTS under different factor values in a simu-
lated environment, where impressions and CTRs are real, but
the user responses are simulated based on the empirical CTR
of each headline.

In the simulation of Thompson Sampling [11], the reward
probability of each arm is modeled by a Beta distribution
which is updated after an arm is selected. For batched
Thompson Sampling, the Beta distribution of each arm is
only updated at the end of each batch, i.e., a fixed-length
time interval. Accordingly, the number of events within a
batch, which is referred to as batch size, is determined by
the count of empirical impressions occurred in this fixed-
length time interval. The batches of an article rarely have the
same size, because the number of impressions usually varies
a lot in different time intervals. Table I illustrates an example
of how batch sizes are calculated based on the minute-level
impressions when updates occur every 3 minutes.

We simulate user clicks following the practice of [2]: Upon
a viewing request, suppose the algorithm selects to display arm
k, then the user response is simulated from the Bernoulli(θ̂k)
distribution, where we denote θ̂k as the estimated success
probability of arm k, defined by its empirical CTR during
the testing period. Note that for the arm deemed best during
the testing period, we still use its testing period empirical
CTR to calculate θ̂k, although theoretically we can calculate
its “overall” empirical CTR including both testing and post-
testing period. This is because this “overall” empirical CTR
is not comparable to the empirical CTRs of other arms,

2The numbers are for illustration purpose only. They are not actual
impressions.



Fig. 1. Histogram of article active lifespan

which can only be calculated during the testing period. After
the simulation is completed on all articles, we quantify the
performance of a headline testing algorithm by total clicks
summed across all articles over their lifespans.

C. Factor 1: Algorithm Stopping Point

Due to the observed CTR discrepancy between the testing
and post-testing period illustrated in Section II-B, we would
avoid stopping the algorithm too early, so as to cover any
potential performance change among headline variations. One
straightforward proposal is to run the algorithm throughout
the whole article life. Although technically achievable, this
proposal is not desired, given that the distribution of impres-
sions over time usually has a very long right tail. When the
impressions are very sparse, the click gain is so little that it is
not worth the engineering overhead of running the algorithm.
Thus, we would like to stop the algorithm when the majority
of articles are no longer active.

We define the active lifespan of an article as the time it takes
to reach 95% of its total impressions. Fig. 1 demonstrates that
the active lifespans of 95% of the articles are under 48 hours.
Thus, we take 48 hours as the algorithm stopping point.

D. Factor 2: Update Methods

In traditional Thompson Sampling with Bernoulli bandits,
the Beta(α, β) distribution of the selected arm is updated to
Beta(α + 1, β) if we observe a click, otherwise it is updated
to Beta(α, β+1). When observed responses come in batches,
we need to aggregate the impressions and clicks data for each
arm within each batch, before updating the corresponding Beta
distribution. We consider two update methods to achieve this:
summation update and normalization update.

To specifically describe the two update methods, we denote
the Beta distribution of arm k in the t-th batch by Beta(αt

k,
βt
k). St

k and F t
k are the click and non-click counters for arm k

in batch t. M t denotes the number of impressions in the t-th
batch.

Algorithm 1 explains the bTS method with summation
update. It is a direct extension from the event-level update
method of traditional Thompson Sampling, where αt

k and βt
k

are updated by raw counts of clicks and non-clicks.
We also consider another update method named as normal-

ization update. As illustrated in Algorithm 2, it increments

Initialize α1
k = 1 and β1

k = 1 ∀k ;
for batch index t ∈ {1, ..., T} do

Initialize St
k = 0 and F t

k = 0 ∀k ;
for event i ∈ {1,...,M t} do

for arm k ∈ {1, ...,K} do
Draw random sample xk from Beta(αt

k, βt
k)

end
Display arm k∗ = argmaxk xk and observe r;
if r = 1 then

St
k∗ = St

k∗ + 1
else

F t
k∗ = F t

k∗ + 1
end

end
for arm k ∈ {1, ...,K} do

αt+1
k = αt

k + St
k ;

βt+1
k = βt

k + F t
k ;

end
end

Algorithm 1: Batched Thompson Sampling with summation
update

Initialize α1
k = 1 and β1

k = 1 ∀k ;
for batch index t ∈ {1, ..., T} do

Initialize St
k = 0 and F t

k = 0 ∀k ;
for event i ∈ {1,...,M t} do

for arm k ∈ {1, ...,K} do
Draw random sample xk from Beta(αt

k, βt
k)

end
Display arm k∗ = argmaxk xk and observe r;
if r = 1 then

St
k∗ = St

k∗ + 1
else

F t
k∗ = F t

k∗ + 1
end

end
for arm k ∈ {1, ...,K} do

αt+1
k = αt

k + Mt

K
St
k

St
k+F t

k
;

βt+1
k = βt

k + Mt

K (1− St
k

St
k+F t

k
) ;

end
end

Algorithm 2: Batched Thompson Sampling with normaliza-
tion update

α and β by the number of normalized clicks and non-clicks
respectively, assuming equal traffic allocation across arms.

Normalization update method addresses a side-effect of
imbalanced traffic allocation across arms within each batch,
which may fail to update in favor of the true optimal arm.
More specifically, if arm k has few clicks in a batch, it may
be a reflection of a low θk, or because the traffic allocated
to this arm is not large enough to generate many clicks. Nor-
malization update helps to mitigate the second possibility by
assuming each arm has equal traffic allocation. The downside



of this method is that it lowers the noise tolerance of the
algorithm, because it would give 1

K of the weight to potential
noise in the data. Given that K is usually less than four, this
method may magnify the potential noise.

We compare the performance of the two methods using the
simulation practice described in Section III-B2. The algorithm
runs for 48 hours as determined in Section III-C, and the
performance of either update method is quantified by the total
click counts for all articles over their lifespans.

According to the result shown in Table II, summation update
consistently has better performance than normalization update
across different update frequencies. One explanation is that,
in the case of headline testing, data noise has more impact on
the algorithm performance than the side-effect of imbalanced
traffic allocation across arms. Thus, we use the summation
update method described in Algorithm 1 for the bTS method.

E. Factor 3: Update Frequency

In Table III, we demonstrate the percentage gap of total
clicks between the best-performing update frequency and the
remaining frequencies. The table shows that for the bTS
method with summation update, more frequent updates lead
to more gain in clicks. The gain becomes marginal when the
update frequency is lower than 5 minutes. Our infrastructure is
capable of updating as frequent as every 5 minutes with almost
no cost. However, going beyond 5-minute frequency creates
a formidable challenge towards the infrastructure, due to the
network transformation cost among multiple components of
the system. In consideration of the marginal benefit associated
with more granular updates, choosing 5 minutes as the update
frequency is a reasonable decision for our use-case.

To conclude the factors we have selected for the bTS method
in our real-world headline testing scenario to achieve the
trade-off between gain in clicks and system cost: we run
the algorithm for 48 hours, aggregate data in each batch
using summation update method described in Algorithm 1,
and update the Beta distribution of each arm every 5 minutes.

IV. METHODOLOGY EVALUATION

This section evaluates the bTS method in the setting of
headline testing. In Sections IV-A, IV-B, and IV-C, we evaluate
its false convergence rate, speed of optimization, and robust-
ness, respectively. Then, we show bTS outperforms the test-
rollout practice, in terms of click gain in Section IV-D, and
less exposure of sub-optimal headlines in Section IV-E.

A. False Convergence Rate

We analyze the false convergence rate of the algorithm,
defined as the proportion of articles that fail to allocate most
traffic to the optimal arm – the arm with highest θ – when
their traffic allocation across arms is stable. Our evaluation
shows 99.25% of the articles converge correctly for the bTS
method.

Fig. 2 demonstrates the traffic proportion over time of some
sample articles that converge correctly: initially all arms have
equal traffic allocation. When the algorithm begins running,

Fig. 2. Sample articles with correct convergence: traffic proportion allocated
to each arm over time. For each article, the θ̂’s of arms are illustrated as the
ratio to the highest θ̂.

it starts to explore for the optimal arm, while simultaneously
allocating more traffic to the arm that performs well.

Fig. 2 also illustrates how Thompson Sampling gracefully
handles exploration at the level of individual arms, as pointed
out in [19]. bTS explores the clearly inferior arms (e.g., Arm
2 in all sample articles) less frequently than arms that may
be optimal, i.e., good arms (e.g., Arm 1 and Arm 3 in the
sample articles). This increases the click gain by shifting traffic
from a clearly inferior arm to arms with better performance.
It also helps distinguish the optimal arm faster, because there
are more samples to compare among the good arms.

B. Speed of optimization

We show the bTS method optimizes quickly, by analyzing
the time it takes for the optimal arm to constantly have the
largest traffic allocation. The histogram presented in Fig. 3
shows the distribution of the time to optimize among articles
that converge correctly. The 80th percentile of the time to
optimize is 30 minutes, which means after 30 minutes, 80%
of the articles constantly have the largest traffic proportion
allocated to their optimal arms.



TABLE II
COMPARISON BETWEEN SUMMATION UPDATE AND NORMALIZATION UPDATE

Total Clicks
Update frequency in minutes

1-min 3-min 5-min 10-min 30-min 60-min

Summation Update Method
versus

Normalization Update Method
+2.50% +3.57% +1.43% +1.08% +1.28% +0.41%

TABLE III
COMPARISON BETWEEN DIFFERENT UPDATE FREQUENCIES FOR SUMMATION UPDATE METHOD

Total Clicks
Update frequency in minutes

1-min 3-min 5-min 10-min 30-min 60-min

% Gap from the
Best-performing

Update Frequency
0 -0.04% -0.06% -0.18% -0.76% -1.52%

Fig. 3. Histogram of time to optimize. All articles that takes over 60 minutes
to optimize are in the last bin.

Fig. 4. Histogram of time needed for self-correction. All articles that takes
over 65 minutes to self-correct are in the last bin.

C. Self-correction under Stress Test

We conduct a stress test via simulation to evaluate the ro-
bustness of our algorithm against unfavorable traffic allocation.
In the stress test, we change the initialized beta distribution
for each arm, so that around 90% of the traffic is allocated
to the arm with the lowest θ, and the remaining traffic is
equally allocated to the other arms. We analyze the time it
takes for the optimal arm to have the highest likelihood to
be displayed for five consecutive batches3, which we refer
to as self-correction, and illustrate the distribution of the time
needed for self-correction in Fig. 4. The vertical red line shows

3This is equivalent to the optimal arm having the highest mean of beta
distribution among other arms for five consecutive batches.

that the 80th percentile is at 33 minutes – 80% of the articles
are able to self-correct within 33 minutes.

D. Gain in Clicks

In this section, we illustrate that applying bTS to headline
testing generates more clicks than the test-rollout strategy,
especially during the testing period of an article when bTS
dynamically allocate more traffic to the well-performing arms,
while impressions are equally allocated to each arm in the test-
rollout strategy. The test-rollout baseline is set up as follows:
for a given article, denote the total baseline click number as
Cbaseline, the click number for arm k during the testing period
as Ctesting

k , and its click number during the post-testing period
as Cpost

k , then

Cbaseline =

K∑
k=1

Ctesting
k + Cpost

k∗ (1)

with Ctesting
k ∼ Binomial(M

test

K
,CTRtesting

k ) (2)

Cpost
k∗ ∼ Binomial(Mpost, CTRtesting

k∗ ) (3)

k∗ = argmax
k∈{1,...,K}

Ctesting
k (4)

where M test and Mpost are the article impressions in the
testing and post-testing period, respectively. CTRtesting

k is the
CTR for arm k in the testing period. Expressions (2) and (3)
mean Ctesting

k and Cpost
k∗ are simulated from the corresponding

Binomial distributions.
We set up this test-rollout baseline instead of directly using

the empirical click data, in order to achieve a fair comparison
with the bTS method. Suppose an article has two arms, with
their testing period empirical CTRs denoted as CTRtesting

1

and CTRtesting
2 , and CTRtesting

2 > CTRtesting
1 . Thus, arm 2

is displayed to all traffic in the post-testing period, and we can
calculate its “overall” empirical CTR, denoted as CTRoverall

2 ,
by its empirical clicks divided by its empirical impressions
during the overall article life. Note that CTRoverall

2 is not
necessarily equal to CTRtesting

2 as illustrated in Section II-B.



TABLE IV
GAIN IN CLICKS: BTS VERSUS TEST-ROLLOUT BASELINE

Total clicks First hour Remaining hours Total

% Increase in Clicks:
bTS versus

Test-rollout Baseline
13.54% 1.00% 3.69%

The simulation for bTS uses CTRtesting
1 and CTRtesting

2

as the estimated success probability of corresponding arms
as explained in Section III-B2, and it is not comparable with
the empirical click data, where we can consider CTRtesting

1

and CTRoverall
2 as the underlying success probabilities. The

possible gap between CTRtesting
2 and CTRoverall

2 can also
lead to different click counts between bTS and empirical click
data, even if bTS performs the same as current practice. On
the other hand, the test-rollout baseline we set up in (1) - (4)
uses CTRtesting

1 and CTRtesting
2 as the underlying success

probabilities, and thus is comparable with bTS.
The gain in clicks for bTS against the test-rollout baseline

is summarized in Table IV. The gain in clicks is split into
the “first-hour” period and the “remaining-hour” period, which
correspond to the testing and post-testing periods in the test-
rollout strategy. On average, bTS gives a 13.54% increase
in total clicks during the first hour. It also has competitive
accuracy in selecting the correct optimal arm to exploit,
indicated by 1% increase in clicks during the post-testing
period than test-rollout baseline.

It is worth noting that this baseline is conservative - the
actual gain after implementation is likely to be larger. The
baseline setup assumes the CTRs of arms are consistent
between testing and post-testing period. This assumption leads
to dilution in click gain during the post-testing period: the
baseline almost always displays the true optimal arm in the
post-testing period due to the long period of exploration4,
and bTS cannot beat the baseline when the optimal arm is
displayed in the baseline during the post-testing period. Thus,
the 13.54% click gain harvested in testing period is diluted to
3.69% overall click gain. In practice, arm performance may
change over time as mentioned in Section II-B. The current
test-rollout practice is not able to capture the fluctuation, while
the bTS algorithm would detect the change and adjust the
traffic accordingly, which would potentially gain more clicks.

E. Fewer Impressions on Sub-optimal Headlines

Another benefit of bTS is that it improves user experience
by exposing much fewer sub-optimal headlines. We analyze
the overall percentage decrease in impressions on sub-optimal
headlines of the bTS method versus the test-rollout practice.
For the test-rollout strategy which we use as the baseline, we
assume that no traffic is allocated to sub-optimal headlines
during the post-testing period. Even in this best-case scenario
for the baseline, the sub-optimal headline impressions of the

4There is a 97% accuracy rate for the baseline to display the optimal arm
during the post-testing period.

bTS method decrease by 71.53% compared with the test-
rollout practice.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose to apply an MAB approach to
headline testing where data are processed in batches due
to their high volume and high velocity. Although the bTS
algorithm is developed under the news article headline testing
scenario, the parameters used to tune our model can be
generalized to other real-world MAB problems, including
marketing campaigns, one-time event optimizations, and user
purchase/registration funnels.

The stationary assumption beyond the first hour should
be assessed after we have data on all arms beyond the
first hour, which will be available after the bTS method is
implemented. The current assumption is that θk, the success
probability for arm k, is constant over time. It is possible for
θk to change over time, and this formulates a non-stationary
bandit problem. Note that for non-stationary environments, the
proposed bTS method is already an improvement of the test-
rollout strategy, because it continuously tests headline variants
throughout the active lifespan of news articles. There is room
for further enhancement of the methodology to achieve better
performance, especially when θk changes so significantly and
rapidly that the order among θk for k ∈ {1, ...,K} flips
multiple times during the article lifespan.

Clickbait detection and prevention are known challenges
to media sites [26]. We are also motivated to explore more
sophisticated metrics than raw clicks to be used as the reward
of MAB. As an example, we may discount the clicks with a
short dwell time, and the reward of each headline variation
becomes a number between 0 and 1. We can then optimize
this “click-dwell” reward using an adaptation of Bernoulli
Thompson Sampling algorithm introduced in [4], which sup-
ports the reward to be distributed in the interval [0,1]. When
the discounting strategy of dwell time is properly selected, this
should be helpful to mitigate the clickbait problem.

At Yahoo Front Page, the top module hosts multiple articles.
When headline testing is conducted simultaneously on multi-
ple articles within this module, they may interact with each
other. That is, the success probability θ of a headline variant
may be influenced by the titles of the remaining articles in the
same module. This motivates us to extend our research and
develop an MAB testing framework that optimizes the article
titles for the entire module, e.g., with a multivariate MAB
algorithm introduced in [20].

ACKNOWLEDGMENT

The authors would like to express their gratitude to Russell
Chen, Shriram Kumar, Jigar Patel, and Rupert Wu for valuable
discussions; to Virendra Pratap Singh for his help with empir-
ical data collection; and to Sameer Raheja and Kelly Hirano
for their support of this study.



REFERENCES

[1] “Headline testing page at optimizely.” [Online]. Available: https:
//www.optimizely.com/optimization-glossary/headline-testing/

[2] E. M. Schwartz, E. T. Bradlow, and P. S. Fader, “Customer acquisition
via display advertising using multi-armed bandit experiments,” Market-
ing Science, vol. 36, no. 4, pp. 500–522, 2017.

[3] Y. Keneshloo, S. Wang, E.-H. S. Han, and N. Ramakrishnan, “Predicting
the shape and peak time of news article views,” in Big Data (Big Data),
2016 IEEE International Conference on. IEEE, 2016, pp. 2400–2409.

[4] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-
armed bandit problem,” in Conference on Learning Theory, 2012, pp.
39–1.

[5] V. Kuleshov and D. Precup, “Algorithms for multi-armed bandit prob-
lems,” arXiv preprint arXiv:1402.6028, 2014.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[7] J.-Y. Audibert, R. Munos, and C. Szepesvári, “Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits,” Theoretical
Computer Science, vol. 410, no. 19, pp. 1876–1902, 2009.

[8] J.-Y. Audibert and S. Bubeck, “Regret bounds and minimax policies
under partial monitoring,” Journal of Machine Learning Research,
vol. 11, no. Oct, pp. 2785–2836, 2010.

[9] W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Biometrika,
vol. 25, no. 3/4, pp. 285–294, 1933.

[10] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation
indices. John Wiley & Sons, 2011.

[11] O. Chapelle and L. Li, “An empirical evaluation of thompson sampling,”
in Advances in neural information processing systems, 2011, pp. 2249–
2257.

[12] S. L. Scott, “A modern bayesian look at the multi-armed bandit,” Applied
Stochastic Models in Business and Industry, vol. 26, no. 6, pp. 639–658,
2010.

[13] O.-C. Granmo, “A bayesian learning automaton for solving two-armed
bernoulli bandit problems,” in 2008 Seventh International Conference
on Machine Learning and Applications. IEEE, 2008, pp. 23–30.

[14] B. C. May, N. Korda, A. Lee, and D. S. Leslie, “Optimistic bayesian
sampling in contextual-bandit problems,” Journal of Machine Learning
Research, vol. 13, no. Jun, pp. 2069–2106, 2012.

[15] E. Kaufmann, N. Korda, and R. Munos, “Thompson sampling: An
asymptotically optimal finite-time analysis,” in International Conference
on Algorithmic Learning Theory. Springer, 2012, pp. 199–213.

[16] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale
bayesian click-through rate prediction for sponsored search advertising
in microsoft’s bing search engine.” Omnipress, 2010.

[17] D. Agarwal, “Computational advertising: the linkedin way,” in Pro-
ceedings of the 22nd ACM international conference on Conference on
information & knowledge management. ACM, 2013, pp. 1585–1586.

[18] D. Agarwal, B. Long, J. Traupman, D. Xin, and L. Zhang, “Laser:
A scalable response prediction platform for online advertising,” in
Proceedings of the 7th ACM international conference on Web search
and data mining. ACM, 2014, pp. 173–182.

[19] S. L. Scott, “Multi-armed bandit experiments in the online service
economy,” Applied Stochastic Models in Business and Industry, vol. 31,
no. 1, pp. 37–45, 2015.

[20] D. N. Hill, H. Nassif, Y. Liu, A. Iyer, and S. Vishwanathan, “An efficient
bandit algorithm for realtime multivariate optimization,” in Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 2017, pp. 1813–1821.

[21] S. L. Scott, “Overview of content experiments: Multi-armed bandit
experiments,” 2014. [Online]. Available: https://support.google.com/
analytics/answer/2844870

[22] Y. Yang, D. Zhu et al., “Randomized allocation with nonparametric
estimation for a multi-armed bandit problem with covariates,” The
Annals of Statistics, vol. 30, no. 1, pp. 100–121, 2002.

[23] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[24] K. Ferreira, D. Simchi-Levi, and H. Wang, “Online network revenue
management using thompson sampling,” 2017.

[25] J. Kawale, H. H. Bui, B. Kveton, L. Tran-Thanh, and S. Chawla,
“Efficient thompson sampling for online matrix-factorization recommen-

dation,” in Advances in neural information processing systems, 2015, pp.
1297–1305.

[26] A. Chakraborty, B. Paranjape, S. Kakarla, and N. Ganguly, “Stop
clickbait: Detecting and preventing clickbaits in online news media,”
in Proceedings of the 2016 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining. IEEE Press, 2016,
pp. 9–16.

https://www.optimizely.com/optimization-glossary/headline-testing/
https://www.optimizely.com/optimization-glossary/headline-testing/
https://support.google.com/analytics/answer/2844870
https://support.google.com/analytics/answer/2844870

	Introduction
	Current Headline Testing Practice
	User Engagement Loss in the Testing Period
	Arm Performance Discrepancy Between Testing and Post-testing Period

	Methodology
	Preliminaries
	Headline Testing as a Bernoulli Bandit Problem
	Thompson Sampling

	Batch Updates for Real-world High-volume Traffic
	Empirical data
	Simulation practice

	Factor 1: Algorithm Stopping Point
	Factor 2: Update Methods
	Factor 3: Update Frequency

	Methodology Evaluation
	False Convergence Rate
	Speed of optimization
	Self-correction under Stress Test
	Gain in Clicks
	Fewer Impressions on Sub-optimal Headlines

	Conclusions and Future Work
	References

